

YEAR 12 MATHEMATICS METHODS SEMESTER ONE 2018 TEST 3 DIFFERENTIAL CALCULUS APPLICATIONS, DISCRETE RANDOM VARIABLES, **BERNOULLI TRIALS AND BINOMIAL DISTRIBUTIONS**

Thursday 12 th April		Name:		
Time: 50 minutes	Part A:	Part B:	Total:	%
Answer all question	ns neatly in the snace	s provided. Show all	working.	

- Answer all questions neatly in the spaces provided. Show all working.
- You are permitted to use the Formula Sheet for both sections, and an A4 page of notes, plus up to 3 permitted calculators in the Calculator Allowed section.

Торіс	Confidence	
Further differentiations and applications		
The second derivative and applications of differentiation	Low Moderate High	
Discrete random variables		
General discrete random variables	← → Noderate High	
Bernoulli distributions	Low Moderate High	
Binomial distributions	← → Low Moderate High	

Self reflection (eg. comparison to target, content gaps, study and work habits etc)			

1. [8 marks]

The displacement, x cm, of a particle at time t seconds, moving along a horizontal track is described by the function $x = 5\cos(3t)$.

a) Determine the initial position and velocity of the particle.

[3]

b) Determine the exact time when the particle first turns around.

[2]

c) Determine the exact rate of change of speed of the particle when $t = \frac{\pi}{4}$ seconds.

2. [7 marks]

Jack was investigating the variance of binomial distributions for different probabilities and exploring the connection to calculus.

a) For a random variable Y, where $Y \sim \text{Bin}(5, 0.4)$, calculate the variance, Var(Y).

[2]

- b) For the general random variable X, where $X \sim \text{Bin}(n, p)$,
 - i) Determine a function in terms of the probability p, for the variance, Var(X).

ii) Use calculus techniques to show that the maximum variance is achieved when p = 0.5. Justify that your result is a maximum.

3. [5 marks]

A discrete random variable $\, X \,$ has the following properties:

- the expected value E(X) = 18
- the standard deviation $\sigma = \frac{3\sqrt{5}}{2}$.
- a) If the random variable is binomial, determine the number of trials and probability of success.

- [3]
- b) Determine the expected value E(Y) and variance Var(Y) if Y is a random variable such that Y = 5 2X.

4. [11 marks]

Consider the function $y = \frac{10 \ln(x)}{x^2}$.

a) Determine $\frac{dy}{dx}$ and its associated domain. Hence determine the exact location and nature of the stationary point(s).

[5] b) Determine the exact location of any inflection points.

[3]

5. [9 marks]

Aaron and Brad are playing a tennis match. The match continues until one player wins a total of two (2) sets. Aaron estimates from past experience that his chance of winning any set against Brad, independent from any previous sets, is $\frac{3}{10}$.

Let the random variable $\, X \,$ be the number of sets won by Aaron in the match.

a) Give a reason as to why $\, X \,$ cannot be modelled by a binomial distribution.

[1]

b) Draw a tree diagram to show the possible outcomes of the match and the associated probabilities. Hence complete the probability density function for $\,X\,$ in the table below, stating answers as fractions.

x	0	1	2
P(X=x)			

c)	Determine the probability that Aaron wins the match, given he wins the first set.	
		[2]
d)	Calculate the expected value of X as a decimal, and explain its meaning in the context the question.	of
		[2]

6.	[7 marks	:1

Based on shipments of mobile phones to Australia in the last quarter of 2017, the Apple iPhone has a market share of around 37%. Assume that every Australian has exactly one mobile phone.

A random survey of 20 people was conducted on mobile phone type. Showing appropriate probability notation, determine the probability, to three decimal places, that

a)	Exactly six respondents had an iPhone.	
b)	At least six respondents had an iPhone.	[2]
c)	No more than ten respondents had an iPhone, if it is known at least six had an iPhone.	[2]
	[3 marks]	[3]

7.

How many times should a fair die be rolled so that the probability of rolling exactly one six is the same as the probability of not rolling a six at all?

[3]

i https://www.statista.com/statistics/436033/australia-smartphone-shipments-vendor-market-share/